The Cholesky Decomposition - Part II

Gary Schurman MBE, CFA

June, 2012

A Cholesky matrix transforms a vector of uncorrelated (i.e. independent) normally-distributed random variates into a vector of correlated (i.e. dependent) normally-distributed random variates. In Part I we developed the mathematics for the Cholesky matrix by performing a true matrix LU decomposition. In Part II we will derive the Cholesky matrix via a simpler, more abbreviated approach. To this end we will use the correlation matrix from Part I which was...

$$\mathbf{C} = \begin{bmatrix} 1.00 & 0.35 & 0.55 \\ 0.35 & 1.00 & 0.25 \\ 0.55 & 0.25 & 1.00 \end{bmatrix} \tag{1}$$

In Part I we determined that the matrix decomposition took the form...

$$\mathbf{C} = \mathbf{L}\mathbf{L}^T \tag{2}$$

Note that matrix \mathbf{L} is a lower triangular matrix and matrix \mathbf{L}^T is its transpose. We can therefore define matrix \mathbf{L} and matrix \mathbf{L}^T as...

$$\mathbf{L} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \dots \text{and} \dots \mathbf{L}^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ 0 & a_{22} & a_{32} \\ 0 & 0 & a_{33} \end{bmatrix}$$
(3)

The dot product of matrix **L** and matrix \mathbf{L}^{T} as defined in Equation (3) above is...

$$\mathbf{L}\mathbf{L}^{T} = \begin{bmatrix} a_{11}^{2} & a_{11}a_{21} & a_{11}a_{31} \\ a_{11}a_{21} & a_{21}^{2} + a_{22}^{2} & a_{21}a_{31} + a_{22}a_{32} \\ a_{11}a_{31} & a_{21}a_{31} + a_{22}a_{32} & a_{31}^{2} + a_{32}^{2} + a_{33}^{2} \end{bmatrix}$$
(4)

Using Equations (1) and (4) above we can now rewrite Equation (2) as...

$$\mathbf{C} = \mathbf{L}\mathbf{L}^{I}$$

$$\begin{bmatrix} 1.00 & 0.35 & 0.55\\ 0.35 & 1.00 & 0.25\\ 0.55 & 0.25 & 1.00 \end{bmatrix} = \begin{bmatrix} a_{11}^{2} & a_{11}a_{21} & a_{11}a_{31}\\ a_{11}a_{21} & a_{21}^{2} + a_{22}^{2} & a_{21}a_{31} + a_{22}a_{32}\\ a_{11}a_{31} & a_{21}a_{31} + a_{22}a_{32} & a_{31}^{2} + a_{32}^{2} + a_{33}^{2} \end{bmatrix}$$

$$(5)$$

As described in Part I our objective is to solve for matrix \mathbf{L} , which is the Cholesky matrix. We can accomplish this task via a bootstrapping method where we start at the top left corner of matrix \mathbf{C} and work down each column of the lower triangular matrix solving for the elements of matrix \mathbf{L} along the way. We therefore have the following equations that we will solve in order...

$$a_{11}^2 = 1.00\tag{6}$$

$$a_{11}a_{21} = 0.35\tag{7}$$

$$a_{11}a_{31} = 0.55 \tag{8}$$

$$a_{21}^2 + a_{22}^2 = 1.00\tag{9}$$

$$a_{21}a_{31} + a_{22}a_{32} = 0.25\tag{10}$$

$$a_{31}^2 + a_{32}^2 + a_{33}^2 = 1.00 \tag{11}$$

By solving for a_{11} in Equation (6) we get...

$$a_{11}^2 = 1.00$$

$$a_{11} = \sqrt{1.00}$$

$$a_{11} = 1.00$$
(12)

Using the result of Equation (12) above and solving for a_{21} in Equation (7) we get...

$$a_{11}a_{21} = 0.35$$

$$a_{21} = 0.35 \div a_{11}$$

$$a_{21} = 0.35$$
(13)

Using the result of Equation (12) above and solving for a_{31} in Equation (8) we get...

$$a_{11}a_{31} = 0.55$$

$$a_{31} = 0.55 \div a_{11}$$

$$a_{31} = 0.55$$
(14)

Using the result of Equation (13) above and solving for a_{22} in Equation (9) we get...

$$a_{21}^2 + a_{22}^2 = 1.00$$

$$a_{22}^2 = 1.00 - a_{21}^2$$

$$a_{22} = \sqrt{0.8775}$$

$$a_{22} = 0.9367$$
(15)

Using the result of Equations (13), (14) and (15) above and solving for a_{32} in Equation (10) we get...

$$a_{21}a_{31} + a_{22}a_{32} = 0.25$$

$$a_{32} = (0.25 - a_{21}a_{31}) \div a_{22}$$

$$a_{32} = (0.25 - 0.1925) \div 0.9367$$

$$a_{32} = 0.0614$$
(16)

Using the result of Equations (14) and (16) above and solving for a_{33} in Equation (11) we get...

_

$$a_{31}^{2} + a_{32}^{2} + a_{33}^{2} = 1.00$$

$$a_{33}^{2} = 1.00 - a_{31}^{2} + a_{32}^{2}$$

$$a_{33} = \sqrt{1.00 - 0.3025 - 0.0038}$$

$$a_{33} = 0.8329$$
(17)

Using the results of the bootstrapping method as applied above, the Cholesky matrix, which is matrix \mathbf{L} as defined in Equation (3) above, is therefore...

Cholesky matrix =
$$\mathbf{L} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1.0000 & 0 & 0 \\ 0.3500 & 0.9367 & 0 \\ 0.5500 & 0.0614 & 0.8329 \end{bmatrix}$$
 (18)